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ABSTRACT 

The thermal  decompos i t ion  o f  aqueous  manganese ni t ra te  solut ions in air or ni t rogen 
proceeds  in three steps: 

(i) partial evaporat ion o f  water  to  a concen t ra ted  solut ion containing equimolar  
amounts  o f  water  and Mn(NO3)2, 

(ii) a first decompos i t ion  step in which the residual water  evolves and par t  of  the 
Mn(NOs)2 decomposes  to  MnO2, and 

(iii) a second decompos i t ion  step in which the remaining Mn(NO3)2 decomposes  to 
MnO2. 

Decompos i t ion  o f  par t  o f  the  Mn(NOs)2 in the first step is caused by  the  presence o f  
water  (vapour)  which accelerates the decompos i t ion  o f  anhydrous  Mn(NO3)2 and lowers 
the t empera tu re  at which this react ion starts. Without  water  [anhydrous  Mn(NO3)2 ] only  
one  decomposi t ion  step occurs. 

Off-gas analysis with mass spec t romet ry ,  IR spec t roscopy  and chemiluminescence 
showed NO2 to be the main gaseous p roduc t ,  NO being fo rmed  in much  smaller amounts .  
a m o u n t s .  

INTRODUCTION 

Nowadays  manganese  d iox ide  is p roduced  in increasing s m o u n t s  b y  elec- 
t ro lys is  of  manganese  su lphate  so lu t ions  for  use as depolar iser  in bat ter ies  
[1] .  This  is a r a the r  sophis t ica ted  and energy- intensive  p r o c e ~ .  Therefore ,  an 
a l ternat ive  process  is being s tudied  to  ob ta in  ba t te ry-grade  manganese  
d iox ide  f rom manganese  ore via a manganese  n i t ra te  so lu t ion .  As par t  o f  th is  
p ro jec t  t he  mechan i sm,  k inet ics  and hea t  o f  reac t ion  of  the  t he rma l  decom- 
pos i t ion  of  aqueous  manganese  n i t ra te  so lu t ions  were s tudied.  The  results  of  
an  invest igat ion in to  t he  mechan i sm are repor ted  below. 

L I T E R A T U R E  

Hydrates 

Ewing  and  Rasmussen  [2]  f o u n d  the  hyd ra t e s  M n ( N O 3 ) 2 - 6 H 2 0 ,  
Mn(NOs)2-  4 H20 ,  Mn(NOs)2-  2 H20  and  Mn(NO3)2-  H 2 0  to  be s table in 
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the  sys tem Mn(NO3)2--H20, whereas  in t he  sys tem Mn(NO3)2--H20--HNO3, 
besides these  hydrates ,  t he  sesquihydra te  and h e m i h y d r a t e  also occur red  [3] .  
However ,  there  is still some d o u b t  abou t  the  ex is tence  o f  t he  la t ter  two  
hydra tes  [4] .  

S t r u c t u r e s  

When compar ing  the  crystal s t ructures o f  t he  manganese  ni t ra te  hydra tes  
wi th  6, 4, 2 and  ! molecu le  of  H20,  i t  fol lows tha t  t he  manganese  coordina-  
t ion  changes f rom coord ina t ion  by water  molecules  towards  coo rd ina t i on  by  
ni t ra te  groups, and  f rom six to  eight  coo rd ina t ion  f rom Mn(NO3)2 • 6 H20 to  
Mn(NO3)2 - Mn(NO3)2 • 6 H20 is o r t h o r h o m b i c  and  c o m p o s e d  of  Mn(H20)~ ÷ 
cat ions and  NO{ anions,  the  cat ions and ni t ra te  ions being he ld  toge the r  by  
h y d r o g e n  bonds  [5] .  Mn(NO3)2 - 4 H20 is monocl in ic .  In this case the  Mn 
ions are su r rounded  by a d i s tor ted  o c t a h e d r o n  consist ing o f  four  oxygen  
a toms  f rom H20 molecules  and two  oxygen  a toms  f rom ni t ra te  ions [6 ,7] .  
Mn(NO3)2 • H~O is o r t h o r h o m b i c  and  conta ins  two  crystaUographically dif- 
ferent  types  of  Mn atoms.  One Mn a t o m  is s ix-coordina ted  by oxygen  a toms  
f rom four  ni t ra te  groups and two  water  molecules ,  whereas  t he  o the r  Mn 
a t o m  is e ight -coordina ted  by oxygen  a toms  f rom four  n i t ra te  groups which  
are b o n d e d  b iden ta te ly  [8] .  The s t ructures  of  M n ( N O 3 ) 2 - 2  H20 and 
Mn(NO3)2 are no t  ye t  r epor t ed  in the  l i terature  bu t  t he  Mn ion in 
M n ( N O 3 ) 2 . 2  H~O is p robably  s ix-coordinated  by  four  oxygen  a toms  f rom 
m o n o d e n t a t e  ni t ra te  groups and two  oxygen  a toms  f rom water  molecules .  
The Mn ions in anhydrous  Mn(NO3)2 are bel ieved to  be  e igh t -coord ina ted  by  
four  b iden ta te  ni t ra te  groups. This possibi l i ty is easily d e d u c e d  f rom the  
s tructures of  Mn(NO3)2 - 4 H20 and especially Mn(NO3)2 - H20.  

Water  r e m o v a l  

In a desiccator  wi th  concen t r a t ed  H2SO+ or P2Os at 25°C a Mn(NO3)2 
solut ion loses water  to fo rm Mn(NO3)2 • 2 H20,  according to  Weigel et  al. 
[4] ,  whereas  on  p ro longed  dry ing  over P2Os pure  Mn(NO3)2 was ob ta ined  by 
Ewing and Glick [3] .  On heat ing,  t he  so lu t ion  loses water  unt i l  Mn(NO3)2 - 
H20 is fo rmed,  according to  refs. 9 and  10 or unt i l  M n ( N O 3 ) 2 - 2  H20,  
according to  refs. 11- -14  before  ni t ra te  d e c o m p o s i t i o n  starts. Under  vacuum 
at 25°C, water  evaporates  to  the  compos i t i on  M n ( N O 3 ) 2 - 2  H20 which,  
w h e n  hea ted  to  68°C, changes to  Mn(NO3)2 anhyd ra t e  via the  m o n o h y d r a t e  
[4] .  Zdanovskii  and  Zhelnina  [ 1 5 1  showed  tha t  w h e n  a Mn(NO3)2 so lu t ion  
with some HNO3 is hea ted  to  80°C only  water  vapour  comes  off  in the  
beginning but  later also HNO3. HNO3 removal  is a lmost  comple t e  when  the  
H20/Mn(NO3)2 molar  ratio has reached t he  value of  4. 

In s l lmmary,  the  l i terature repor ts  on  the  behaviour  o f  manganese  ni t ra te  
solut ions are conf l ic t ing and it is n o t  clear wha t  hydra t e  will be ob ta ined  on  
heating.  
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Decomposition 

S o m e  q u e s t i o n s  c o n c e r n i n g  t h e  n i t r a t e  d e c o m p o s i t i o n  a re  a lso  st i l l  o p e n .  
I n  a l m o s t  a11 t h e  l i t e r a t u r e ,  e.g. refs .  9 - - 1 1  a n d  16 ,  t h e  d e c o m p o s i t i o n  t o o k  
p l a c e  in  o n e  s t ep :  b u t  in  re fs .  1 2 - - 1 4  t w o  s t e p s  a re  r e p o r t e d .  I n  t h e  l a t t e r  
p a p e r s  i t  w a s  a s s u m e d  t h a t  t h e  Mn(NO3)2  • 2 H 2 0  f o r m e d  f i r s t  d e c o m p o s e s  
v ia  Mn(NO3)2  a n h y d r a t e  t o  a n  o x y n i t r a t e ,  M n O N O 3 ,  w h i c h  r e a c t e d  f u r t h e r  a t  
s l i gh t ly  h i g h e r  t e m p e r a t u r e s  t o  M n O 2  

Mn(NO3)2  s o l u t i o n  -* Mn(NO3)2  • 2 H 2 0  -* Mn(NO3)2  ~ M n O N O 3  -* 
M n O 2  (1)  

W a t e r  v a p o u r  h a d  a m a r k e d  e f f e c t  o n l y  o n  t h e  s e c o n d  s t ep ,  t h e  a c t i v a t i o n  
e n e r g y  b e i n g  r e d u c e d  f r o m  1 2 2 - - 1 3 9  k J  m o l e  -I t o  7 6 - - 8 8  k J  m o l e  - l  [ 1 3 ] .  
L u m m e  a n d  Ra iv io  [ 1 1 ]  f o u n d  t h e  d e c o m p o s i t i o n  t o  o c c u r  in  o n e  s t e p  w i t h  
a n  a c t i v a t i o n  e n e r g y  o f  9 9  + 2 k J  m o l e  -1. O n  a c c o u n t  o f  t h e  a b o v e  i t  was  
c o n s i d e r e d  n e c e s s a r y  t o  i n v e s t i g a t e  t h e  d e c o m p o s i t i o n  o f  a q u e o u s  m a n g a -  
n e s e  n i t r a t e  s o l u t i o n s  in  m o r e  d e t a i l  in  o r d e r  t o  e l u c i d a t e  t h e  c a u s e  o f  t h e  
d i f f e r e n c e s  n o t e d  h e r e .  

EXPERIMENTAL 

Equipment 

A S t a n t o n - R e d c r o f t  a n d  a C a h n  R G ( T G S - 1 )  t h e r m o b a l a n c e  w e r e  
e m p l o y e d .  Air ,  d r i e d  o v e r  a m o l e c u l a r  s ieve,  f l o w e d  t h r o u g h  t h e  b a l a n c e  a t  a 
r a t e  o f  1 0 0  o r  2 0 0  m l  m i n  -1. T h e  s a m p l e  w e i g h t  w a s  n o r m a l l y  in  t h e  r a n g e  
1 - -5  m g  b u t  in  o n e  ser ies  o f  e x p e r i m e n t s  i t  was  v a r i e d  f r o m  0 .5  t o  23  m g .  
I s o t h e r m a l  as we l l  as n o n - i s o t h e r m a l  e x p e r i m e n t s  w e r e  p e r f o r m e d .  W a t e r  
v a p o u r  c o u l d  be  a d d e d  t o  t h e  gas f l o w i n g  t o  t h e  C a h n  b a l a n c e  b y  s a t u r a t i n g  
p a r t  o f  t h e  gas f l o w .  I t  m u s t  be  n o t e d  t h a t  b e f o r e  t h e  o v e n  in  t h e  C a h n  
b a l a n c e  c o u l d  b e  h e a t e d ,  i t  h a d  t o  be  s w i t c h e d  t o  a s t a n d b y  p o s i t i o n  t h r o u g h  
w h i c h  i t  w a s  h e a t e d  r e l a t i v e l y  f a s t  t o  5 5 ° C .  O n l y  a f t e r  t h i s  p r e h e a t  s t age  w a s  
h e a t i n g  a t  a s e l e c t e d  a n d  c o n t r o l l e d  r a t e  p o s s i b l e .  T h e  o f f -gas  o f  s o m e  t he r -  
m o b a l a n c e  e x p e r i m e n t s  w a s  a n a l y s e d  f o r  w a t e r  v a p o u r  b y  a K e i d e l  ce l l  ( C o n -  
s o l i d a t e d  E l e c t r o d y n a m i c s  C o r p o r a t i o n ,  t y p e  2 6 - 3 0 3 ) .  T h i s  i n s t r u m e n t  m e a -  
su re s  c o n c e n t r a t i o n s  o f  w a t e r  v a p o u r  b e t w e e n  1 a n d  1 0 0 0  p p m  in  a gas f l o w  
o f  1 0 0  m l  m i n  -1. T h e  gas t o  b e  a n a l y s e d  f l o w s  t h r o u g h  a t u b e  c o a t e d  w i t h  
P2Os,  t h e  w a t e r  v a p o u z  a d s o r b s  a n d  is e l e c t r o l y s e d  f o r m i n g  H2 a n d  02 .  T h e  
c u r r e n t  is a m e a s u r e  o f  t h e  w a t e r  v a p o u r  c o n c e n t r a t i o n .  

T w o  s e p a r a t e  e x p e r i m e n t s  w e r e  p e r f o r m e d  in  w h i c h  t h e  o f f -gas  was  
a n a l y s e d  b y  a V a r i a n  M A T  3 1 1 A  h i g h  r e s o l u t i o n  m a s s  s p e c t r o m e t e r  c o u p l e d  
t o  a c o m p u t e r  f o r  d a t a  c o l l e c t i o n .  F o r  e a c h  e x p e r i m e n t  t h e  m a s s / c h a r g e  r a t i o  
r a n g e  o f  1 0 - - 1 0 0  w a s  s c a n n e d  v e r y  f r e q u e n t l y .  A t  t h e  e n d  o f  e a c h  expe r i -  
m e n t  t h e  c o m p u t e r  c a l c u l a t e d  t h e  i n t e n s i t i e s  o f  t h e  t o t a l  i o n  c u r r e n t  as we l l  
as  t h e  i n t e n s i t y  o f  s e l e c t e d  i n d i v i d u a l  m a s s / c h a r g e  r a t i o s  as a f u n c t i o n  o f  
t i m e  ( scans ) .  I t  w a s  a lso  p o s s i b l e  t o  g e n e r a t e  t h e  c o m p l e t e  m a s s  s p e c t r u m  a t  
a g iven  t i m e ,  w h i c h  is n e c e s s a r y  t o  o b t a i n  a n  i m p r e s s i o n  o f  t h e  r e l a t i ve  im-  
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p o r t a n c e  o f  t h e  v a r i o u s  m a s s e s .  T h e  o f f - g a s e s  o f  s o m e  e x p e r i m e n t s  p e r -  
fo rmed  in the  S t an ton  balance were also ana lysed  b y  I R  and  chemilumines-  
cence.  With the  chemi luminescence  e q u i p m e n t  i t  was possible to  measure  t he  
relat ive impor tance  of  NO and  NO2. The  m e t h o d  is based on the  reac t ion  of  
NO wi th  O3. These two  gases reac t  a t  low pressure ( app rox ima te ly  0 .13 kPa) 
to  form NO2, of  which  a par t  ( abou t  10%) is fo rmed  in an  energet ica l ly  acti- 
vated s tate .  When it  reacts  to  stable NO2 l ight  is emi t t ed ;  a t  cons tan t  O3 
concen t r a t i on  the  l ight  in tens i ty  is a measure  o f  t he  NO concen t r a t ion .  The  
sum of  the  NO and  NO~ concen t ra t ions  was measured  b y  first  conver t ing  all 
NO2 the rma l ly  to  NO. Thus,  two  exper imen t s  were  necessary  to  de t e rmine  
NO as well  as NO2. Almos t  all f inal  and some in t e rmed ia t e  p roduc t s  of  t he  
t he rmoba lance  exper iments  were  examined  b y  X-ray d i f f rac t ion  using a 
Debije--Scher~er camera  wi th  FeKn. radia t ion .  The  pho tog raphs  were  com- 
pared wi th  pho tog raphs  of  so-called In t e rna t iona l  C o m m o n  Samples (ICS) 
[17] ,  i.e. s tandard  MnO2 samples chemica l ly  or e lec t ro ly t ica l ly  prepared  and  
made  available ma in ly  b y  ba t t e r y  manufac ture rs .  Most  o f  these  samples show 
app rox ima te ly  the  same d i f f rac t ion  p a t t e r n  and  have the  gamma modifi-  
cat ion.  The  results  were also compared  wi th  da ta  on  manganese  oxides  given 
in the  ASTM or JCPDS indexes  [18] .  

Material 

An aqueous  so lu t ion  of  reagent-grade manganese  ni t ra te ,  ob ta ined  f rom 
J.T. Baker  Chemicals  Corp.,  was used in all exper iments .  The  compos i t i on  of  
the  so lu t ion ,  61.5 wt.% Mn(NOs)2, 2.4 wt.% HNOs and  36.1 wt.% H20,  was 
calculated f rom analysis  results  for  Mn 2+ and  NO~. The  concen t r a t i on  of  
o ther  c o m p o n e n t s  was be low 0.01 wt.%. Theore t ica l  weigh t  losses up  to  
c e r t a ~  compos i t ions  were calcula ted b y  assuming ni t r ic  acid to  have been  
evapora ted  comple te ly ,  in accordance  wi th  results  ob ta ined  b y  Zdanovski i  
and  Zhe ln ina  [15] .  

RESULTS AND DISCUSSION 

Thermogravimetry 

When hea t ing  a sample very careful ly  and  s lowly,  f irst  wa te r  evaporates  
and  the  sample becomes  increasingly viscous and  unde r  our  cond i t ions  
a lways  a t ta ins  t he  overall  compos i t i on  Mn(NOs)2 • H20 .  The  l iquid sample is 
t h e n  p ink ,  very  viscous and  hygroscopic .  U p o n  fu r the r  hea t ing  small  grey or 
b lack dots  appear,  the  sample swells, bubbles  escape and  gradual ly  the  l iquid  
is conver ted  to  a solid. This  in t e rmed ia te  p r o d u c t  is grey,  also hygroscopic  
and  m u c h  more  vo luminous  t h a n  the  ini t ia l  l iquid  sample.  Fi~m|ly, dur ing  a 
second decompos i t i on  step t he  p r o d u c t  t u rns  black;  t h e  f inal  p r o d u c t  looks  
swollen and  has  large holes  and  pores.  The  ra te  o f  t he  f irst  decompos i t i on  
step no rma l ly  becomes  not iceable  at  130 - -140°C  and  t h a t  of  the  second step 
at  1 8 0 - - 1 9 0 ° C .  A stable weigh t  loss cor responding  to  a n h y d r o u s  Mn(NOs)2  
was  never  observed.  
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A representat ive  w e i g h t  loss  curve m e a s u r e d  w i t h  the  Cahn ba lance  is 
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crystals  o f  this  hydra te  are ac tua l ly  present;  it  o n l y  ind icates  t h e  overall  c o m -  
pos i t i on ,  the  ratio Mn(NO3)2 : H~O be ing  1 : 2. T h e  w e i g h t  loss  o f  the  first 
d e c o m p o s i t i o n  step is t o o  large to  result  f r o m  res idual  water  r e m o v a l  o n l y  
and t o o  small  to  correspond  to  the  i n t e r m e d i a t e  o x y n i t r a t e ,  MnONO3,  
a s s u m e d  by  Gallagher et  al. [ 1 , 1 3 , 1 4 ] .  The  f inal  w e i g h t  loss  corresponds  to  
MnO2 f o r m a t i o n .  

In Fig. 2 the  result  o f  hea t ing  a sample  in steps is s h o w n .  The  sample  loses  
water  at 1 2 0 ° C  to give Mn(NO3)2" H 2 0  and  d e c o m p o s e s  at  1 7 0 ° C  to  an 
in t e r me d i a t e  p r o d u c t  ~ h i c h  again d o e s  n o t  c o r r e s p o n d  to  MnONO3,  accord-  
ing to  t h e  we ight  loss.  F ina l ly  MnO~ is again obta ined .  

To d e t e r m i n e  during w h i c h  d e c o m p o s i t i o n  step the  res idual  water  evolves  
f r o m  Mn(NO3)2 • H~O, the  off-gas  o f  the  d e c o m p o s i t i o n  was  ana lysed  w i t h  a 
Keide l  cell.  Af ter  remova l  o f  m o s t  o f  the  water  to  Mn(NO3)2" H 2 0 ,  the  
Keidel  cel l  was  c o n n e c t e d  and the  s a m p l e  h e a t e d  to  2 7 5 ° C  at a rate o f  4 ° C 
m i n  -1. Figure 2 shows  very clearly t h a t  all the  res idual  water  c o m e s  o f f  
during the  first d e c o m p o s i t i o n  step.  The  a m o u n t  o f  water  vapottr was  cal- 
cu la ted  f r o m  the  surface  area o f  the  water  vapour  p e a k  after  appropriate  cali- 
brat ion  o f  the  Keide l  cell .  A p p r o x i m a t e l y  1 m o l e  o f  H 2 0  per m o l e  o f  
Mn(NO3)2 evaporated,  w h i c h  impl i e s  t h a t  the  f inal  p r o d u c t  is v ir tual ly  free 
o f  water.  

To establ ish the  e f f e c t  o f  water  vapour  on  the  d e c o m p o s i t i o n ,  it was  
added  to the  gas f l o w  in k n o w n  c o n c e n t r a t i o n s .  A t  l o w  t empera tures  the  
presence  o f  water  vapour  results  in sample  w e i g h t  increase,  b u t  w h e n  the  
t e mp e r a t u r e  is raised the  sample  again loses  we ight .  The resul t ing  overall  
c o m p o s i t i o n  is a f u n c t i o n  o f  t e m p e r a t u r e  and water  vapour  c o n c e n t r a t i o n .  
Fu r t h e r mor e ,  water  vapour  has a very m a r k e d  i n f l u e n c e  on  the  reac t ion  rate 
o f  t h e  s e c o n d  d e c o m p o s i t i o n  s t e p  a n d  o n  t h e  t e m p e r a t u r e  a t  w h i c h  i t  s t a r t s .  
By heat ing  a sample  to  1 2 0 ° C  the  a p p r o x i m a t e  c o m p o s i t i o n  M n ( N O 3 ) 2 -  
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Fig. 4. D e c o m p o s i t i o n  o f  a manganese  n i t ra te  so lu t ion  wi th  successive add i t ions  o f  wa te r  
d rops  af ter  the  fh:st d e c o m p o s i t i o n  step.  

H20 is obta ined .  This concen t r a t ed  so lu t ion  decomposes  at 150°C to  some  
u n k n o w n  in te rmed ia te  p roduc t  in the  usual manner .  When it is coo led  
slightly to  140°C the  we igh t  of  t he  in t e rmed ia t e  p roduc t  remains  cons tant .  
However ,  af ter  adding  2.9 vol.% water  vapour  to  the  gas phase the  second 
d e c o m p o s i t i o n  step starts at  this lower  t empe ra tu r e  and even goes to  com- 
p le t ion  (Fig. 8). In ano the r  e x p e r i m e n t  a sample  was coo led  af ter  t he  first 
d e c o m p o s i t i o n  at 150- -160°C and t h e n  hea t ed  to  90°C after  adding a d rop  
of  water .  The  weight  d id  n o t  r e tu rn  to  its original value (Fig. 4). Heat ing to 
140- -150°C,  at which  t empe ra tu r e  normal ly  the  first d e c o m p o s i t i o n  step 
occurs,  again resul ted  in a d e c o m p o s i t i o n  step, which  s topped  at a lower  
we igh t  level t h a n  the  first t ime.  Repea t ing  this p rocedure  o f  cooling,  adding 
a d rop  o f  water ,  hea t ing  to  90°C and t h e n  to  140- -150°C gave similar results 
(Fig. 4). Again the  stable weight  af ter  t he  d e c o m p o s i t i o n  at 140- -150°C was 
lower.  Fur the r  hea t ing  resul ted  in d e c o m p o s i t i o n  to  MnO2. Thus,  each addi- 
t ion  o f  water  causes a new  and partial  first d e c o m p o s i t i o n  step. 

I t  is conc luded  f rom the  above expe r imen t s  tha t  water  p robab ly  plays a 
vital role in the  decompos i t i on .  This was con f i rmed  by  expe r imen t s  wi th  
a n h y d r o u s  Mn(NO3)2 prepared  according to the  m e t h o d  of  Weigel et  al. [4] .  
First  m o s t  of  t he  water  of  a Mn(NOs)2 so lu t ion  was r emoved  by  passing air 
at  100 ml  min  -z over it and hea t ing  the  sample to  I 0 4 ° C .  The air f low was 
t h e n  s topped  and the  sample b rough t  unde r  vacuum (=8  kPa).  Af ter  pump-  
ing for  1.5 h,  the  pressure was raised to  0.1 MPa and  the  original air f low 
adjus ted  to  100 ml  m i n - ' .  The sample  weight  n o w  co r r e sponded  very closely 
to  Mn(NO3)2 (Fig. 5). The  mater ia l  was very hygroscopic  and  cons is ted  of  
t iny  dense  particles. Heat ing  revealed a s t rongly changed  d e c o m p o s i t i o n  pat- 
te rn :  a first step was n o t  observed and t he  weight  loss dur ing t he  second step 
was n o w  m u c h  larger. Thus  anhyd rous  Mn(NOs)2 d e c o m p o s e s  in a single 
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Fig. 5. Decomposition of a manganese nitrate solution with removal of water prior to the 
decomposition. 

step, whereas  the  d e c o m p o s i t i o n  of  Mn(NO3)2 wi th  some wa te r  occurs  in 
t~vo steps. 

Similar results  were  ob ta ined  w h e n  the  expe r imen t s  were  p e r f o r m e d  in 
n i t rogen.  

M a s s  s p e c t r o m e t r y  ( M S )  

Mass s p e c t r o m e t r y  was used to con f i rm  the  above results  and  to  d e t e r m i n e  
wh ich  n i t rogen  oxides  are fo rmed .  In the  first  e x p e r i m e n t  several mg o f  an 
aqueous  Mn(NO3)= so lu t ion  were  p laced  in a porce la in  sample  pan  and  
hea t ed  to 300°C at  a ra te  of  Z0°C min  -1 whi ls t  passing h e l i u m  over  the  
sample.  Af ter  r emoving  mos t  of  the  water ,  par t  o f  t he  off-gas was sucked  
into  the  mass spec t rome te r  and  analysed.  The  off-gas of  t he  first d e c o m p o -  
s i t ion step cons is ted  s lmos t  ent i re ly  of  wa te r  vapour ,  excep t  for  some NO 
( r n / e  = 30). This small a m o u n t  of  NO m a y  have resu l ted  f rom evo lu t ion  of  
NO and /o r  NO=, because  pure  NO= gives its m o s t  i m p o r t a n t  peak  at  m / e  = 30 
and  n o t  at  m / e  = 46 ( in tens i ty  rat io 3 : 1). The  p ic tu re  changes  in t he  second  
step. N o w  the  largest peaks are NO ( m / e  = 30),  and  NO2 ( m / e  = 46).  Since in 
t he  mass spec t rum the  in tens i ty  ra t io  of  t he  peak  a t  r n / e  = 30 and  m / e  = 46 
is close to  5, m o s t  of  t he  peak  at  m / e  = 30 comes  f rom NO=, t he  r e m a i n d e r  
originates  f rom NO. The  peak  at  mass 44 cou ld  be a t t r i bu t ed  to  on ly  CO= 
by  opera t ing  the  mass spec t rome te r  at  very h igh reso lu t ion .  The  CO= had  
p robab ly  been  dissolved in the  solut ion.  The  ra t io  of  t h e  peaks  at  r n / e  = 28 
(N2) and  82 (O=) is app rox ima te ly  u n i t y  ins tead of  four ,  w h i c h  means  tha t  
some oxygen  is also p r o d u c e d  dur ing  the  d e c o m p o s i t i o n .  

In a second  expe r imen t ,  a b o u t  1 mg Mn(NO3)2 so lu t ion  was b rough t  in to  
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t he  h igh vacuum chamber  o f  the  mass spec t rometer ,  and  af ter  20 min  hea ted  
to  800°C  to  remove  mos t  o f  the  water .  F r o m  thei-mobalance exper imen t s  
unde r  vacuum it  is k n o w n  tha t ,  b y  hea t ing  the  so lu t ion ,  a n h y d r o u s  
Mn(NO3)2 is fo rmed  before  the  decompos i t i on  starts;  thus  on ly  water  is 
r emoved  at  first.  This  was verif ied b y  the  mass spectra;  all t he  peaks up to  
150°C are caused b y  wate r  which  appa ren t ly  evaporates  very  irregularly,  
perhaps  in t he  fo rm of  escaping bubbles .  Dur ing  the  single decompos i t i on  
step t h a t  n o w  occurred  NO2 and  oxygen  were  formed,  i t  is d i f f icul t  to  say 
whe the r  NO was also evolved because the  in t ens i ty  ra t io  of  the  peak at  m / e  = 
30 and  m / e  = 46 was a p p r o x i m a t e l y  three ,  as is observed wi th  pure  NO2. 
However ,  since in t ens i ty  f luc tua t ions  m a y  occur  it  is no t  possible to  exc lude  
t he  presence o f  NO ent i re ly .  The  peak  at  m / e  = 44 was again caused by  CO2. 

I R  S p e c t r o s c o p y  

The results  ob ta ined  in the  MS exper imen t s  were con f i rmed  by  IR spectro-  
scopy  measurements .  Large sample weights  (several h u n d r e d  mg) and  a 
smaller gas f low had  to  be e m p l o y e d  to  ob ta in  a concen t r a t i on  o f  n i t rogen  
oxides  in t he  off-gas h igh enough  to be measured.  O n l y  NO and  NO2 (N204) 
were found  b u t  no N20  or o the r  n i t rogen  oxides.  

The  MS and  IR  resul ts  f i t  in very  well  w i th  the  previous  the rmograv imet r i c  
data.  T h e y  indica te  t h a t  the  f irst  decompos i t i on  step is caused b y  wate r  
v a p o u r  a n d  d o e s  n o t  r e s u l t  i n  t h e  o x y n i t r a t e ,  M n O N O 3 ,  as  a n  i n t e r m e d i a t e  
product ,  l%eaction scheme ( I )  is thus  unl ike ly .  The  in te rmed ia te  p r o d u c t  
p robab ly  consists  of  a m ix tu r e  o f  u n d e c o m p o s e d  Mn(NOa)2 and  MnO2. This 
conc lus ion  is based on  the  fo l lowing measurements .  First ,  expe r imen t s  were  
carried ou t  to  establish the  valence o f  Mn in the  in te rmedia te  p roduc t .  A 
p roduc t  ob ta ined  b y  removing  mos t  of  t he  wate r  a t  128 ° C and  a subsequen t  
f irst  decompos i t i on  step at  177°C  was rap id ly  cooled  and  t h e n  added  to a 
so lu t ion  of  2 N KOH wi th  5% ~x ta r i c  acid. This acid is k n o w n  to give a 
stable complex  w i th  Mn a+ ions.  Polarographic  analysis  of  the  so lu t ion  for  
Mn 2+, Mn 3÷ and Mn 4÷ showed  Mn 2÷ and  a t race  o f  Mn4+; no Mn 3+ was found.  
To s t reng then  th is  conc lus ion  a sample prepared  in an  ident ica l  m a n n e r  was 
dissolved in wa te r  and  ana lysed  for  NO{ and  Mn 2+. These  two  species were 
f o u n d  in a molar  ra t io  o f  1.94,  i.e. very  close to  the  theore t ica l  value for  
Mn(NOa)2 of  2.0. Fu r the rmore ,  X-ray pho tog raphs  t a k e n  of  in t e rmed ia te  pro- 
ducks made  b y  decompos ing  the  Mn(NOa)2 • H20  so lu t ion  at  several tempera-  
tures  showed lines o f  7- a n d / o r  p-MnO2 and  occas ional ly  very  fa in t  l ines of  
7-MnOOH.  This  resul t  is fu r the r  discussed w h e n  deal ing wi th  the  X-ray da ta  
ob ta ined .  

In  sum mary ,  every th ing  po in t s  to  an  in t e rmed ia te  p r o d u c t  consis t ing of  a 
m ix tu r e  o f  MnO2 and  Mn(NO3)2 and  also to  the  conc lus ion  t h a t  wa te r  
vapour  is responsible  for  the  first  decompos i t i on  step. The  mechan i sm of  t he  
decompos i t i on  of  the  so lu t ion  m a y  be t h a t  dur ing  the  f irst  s tep wate r  vapour  
evolves, fo rming  bubbles  in t he  viscous l iquid.  In  t he  bubbles  the  wate r  
vapour  concen t r a t i on  is fair ly high,  causing some Mn(NOa)2 to  decompose  at  
the  l iquid--gas interface.  The  reac t ion  s tops w h e n  all wa te r  vapour  has 
escaped.  In  t he  second step t h e  res t  o f  Mn(NO3)2 decomposes  to  MnO2 
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1,t ~ep Mn(NO~)2 2,a ~ef MnO2 
Mn(NO3)2 solut ion  -~ Mn(NO3)2 • H20(,) 7 

" ~ M n 0 2  

In view of  the  structuxe of  Mn(NO3)2 • H20 crystals in wh ich  two  differ- 
en t ly  su r rounded  Mn ions occur,  it  is no t  un l ike ly  t ha t  even in t he  l iquid 
m a n y  Mn ions will be su r rounded  as in a crystal.  Chemical ly  speaking one  
could pos tu la te  a mechan i sm in which  the  Mn ions su r rounded  by 2 H20 
and 4 NO;  groups start  to  d e c o m p o s e  to  MnO2, whereas  the  Mn ions sur- 
r o u n d e d  by  four  b iden ta te  NO;  groups will d e c o m p o s e  at h igher  tempera-  
tures.  If  so, one  wou ld  expec t  a cons tan t  weight  loss after  t he  first d e c o m p o -  
si t ion step, because MnO2 and Mn(NO3)2 are p r o d u c e d  in equhno la r  quanti-  
ties (overall MnONO3). However ,  the  measured  weight  loss is m u c h  too  small 
for  this. Therefore ,  a d e c o m p o s i t i o n  caused by  water  vapour  which  is no 
longer  b o u n d  to  Mn ions and  which  at tacks the  Mn(NO3)2 is more  realistic. 
This water  vapour  adsorbs and probably  causes a change in the  manganese  
coord ina t ion  and the  conf igura t ion  of  t he  n i t ra te  groups in t he  anhydrous  
Mn(NOs)2, resul t ing in an accelerat ion of  t he  d e c o m p o s i t i o n  and  a lowering 
of  t he  t empera tu re  at which  the  d e c o m p o s i t i o n  starts. This mechan i sm also 
accounts  for the  observat ion tha t  relat ively large variat ions in weight  loss up 
to  the  second d e c o m p o s i t i o n  step occur ,  which  is caused by  t he  unpred ic t -  
able physical  process of  swelling and  b reak-ou t  of  t he  water  vapour  bubbles .  

The  above mechan i sm migh t  resul t  in a d e p e n d e n c e  of  t he  we igh t  loss of  
t he  first d e c o m p o s i t i o n  step on  sample weight .  Therefore ,  a series o f  non-iso- 
the rmal  exper iments  was p e r f o r m e d  in t he  S t an ton  balance,  t he  sample size 
being varied b e t w e e n  0.5 and  23 rag, using d i f fe ren t  hea t ing  rates and  100 ml  
rain -~ air. The  weight  loss up to  t he  second  d e c o m p o s i t i o n  step increases 
wi th  sample weight  irrespective of  t he  hea t ing  rate  used  (3- -20°C rain -1) 
(Fig. 6). This is a logical consequence  o f  t he  p roposed  m e c h a n i s m  because it 
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is more  di f f icul t  and takes  more  t ime  for  the  wa te r  vapour  to emerge f rom a 
larger "pa r t i c l e " ,  so it  has more  t ime  to a t t ack  Mn(NO3)2 and  to p r o m o t e  its 
decompos i t ion .  This  also expla ins  w h y  cer ta in  au thors  (e.g. refs. 9--11 and  
16) found  the  d e c o m p o s i t i o n  to  occur  in one  step. T h e y  all used very  large 
sample weights  ( > >  100 mg) wh ich  causes the  second step to  disappear .  
Moreover,  sample weights  o f  a p p r o x i m a t e l y  15 mg 45.4  wt.% Mn(NO3)2 
solu t ion ,  such as were  used b y  Gallagher  et  al. [12] ,  cor responds  to  approxi-  
ma t e ly  11 mg of  the  61.5 wt.% Mn(NO3)2 so lu t ion  used in this  s tudy .  Figure 
6 shows t h a t  for  samples of  th is  size t he  observed weigh t  loss is 52--58% of  
the  ini t ial  weight .  This  resul t  comes  very  close to  t he  theore t ica l  weigh t  loss 
of  54.3% for  the  in t e rmed ia t e  ox ide  MnONO3 pos tu la t ed  b y  Gallagher  e t  al. 
[12] .  If  the  band  of  weigh t  losses for  the  d i f fe ren t  sample sizes of  Fig. 6 is 
ex t rapo la ted  to zero sample weight ,  i t  is f ound  t h a t  the  ef fec t  o f  the  escap- 
ing wate r  vapour  on  the  Mn(NO3)2 decompos i t i on  disappears  wi th  in f in i t e ly  
small samples.  The weigh t  loss t hen  is 36--41%, wh ich  agrees well  w i th  the  
theore t ica l  weigh t  loss to  a n h y d r o u s  Mn(NO3)2 of  38.5%. Othe r  expe r imen t s  
in which  the  gas f low was varied be tween  40 and  150 ml  rain -1 showed  no 
dependence  on  the  gas f low of  the  weigh t  loss up  to  the  second step. This 
means  t ha t  the  weigh t  loss of  the  first  decompos i t i on  step is governed by  
cond i t ions  inside the  "pa r t i c l e" .  

Chemiluminescence 

Chemi luminescence  measuremen t s  were made  to quan t i f y  the  relative 
a m o u n t  of  NO and  NO2 in the  off-gases of  the  two  decompos i t i on  steps and  

T A B L E  1 

C h e m i l u m i n e s c e n c e  results  

Sample  wt.  C o m p o n e n t  D e c o m p .  Yield Ra t io  NO Weight  loss NO in 
(mg)  ana lysed  s tep per  m g  or  NO + N O  2 ra t io  o f  to ta l  

sample  l s t / 2 n d  s tep  NO + NO 2 NOx 
(%) l s t / 2 n d  s tep  (%) 

1 .70  NO 1 2.1 0 .68  
NO 2 3.1 

0 .99  NO + NO2 1 23 0 .80 0 .12  
NO + NO 2 2 77 

4.82 NO I 1.5 1.5 
NO 2 1.0 

3 .48  NO + NO2 1 39 0 .64 0 .59  
NO + NO2 2 61 

3 .99 NO 1 1.2 2.0 
NO 2 0.6 

3 .60  NO + NO2 1 39 0 .64 0 .63 
NO + NO2 2 61 

8.72 NO 1 1.9 3.8 
NO 2 0.5 

10.60 NO + NO2 1 74 2.8 2.3 
NO + NO2 2 26 

9.1 
4 .0  

3.8 
1.6 

3.1 
1.0 

2.6 
1.9 
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to  d e t e r m i n e  w h e t h e r  a significant d i f fe rence  occur red  in t he  rat io of  NO 
and NO2 depend ing  on  the  d e c o m p o s i t i o n  step. Pairs o f  expe r imen t s  were  
perfoLmed to  measure  the  a m o u n t  of  NO and NO + NO2 using sample  
weights  a round  1, 4 and  ! 0  rag. The  samples were  d e c o m p o s e d  in the  
S tan ton  the rmoba lance  unde r  100 ml  min  -I N2 and par t  o f  t he  off-gas was 
led in to  the  chemi luminescence  e q u i p m e n t .  For  each sample  weight  the  
~mounts  o f  NO and NO + NO2 were  separately es tabl ished for  b o t h  decom-  
pos i t ion  steps and calculated per  mg initial  sample weight .  The  to ta l  y ie ld  of  
NO.~ (NO + NO2) per mg initial weight  was t aken  as 100% (Table 1, c o l u m n  
4). In co lumn  5 the  ratio is given of  the  yield of  NO or (NO + NO2) in the  
first step to  the  yie ld  in the  second  step. In  c o l u m n  6 t he  ~ m e  rat io is given, 
n o w  calculated f rom the  weight  losses observed.  The  assumpt ion  was m a d e  
tha t  t he  weight  loss of  the  second step is exclusively caused by NOx evolu- 
t ion  and the  weight  loss of  t he  first step by  loss o f  residual  H20 and some  
NO~. The weight  of  the  la t ter  quan t i ty  o f  NOx was calculated by subtract ing 
the  weight  of  t he  wate r  f rom the  weight  loss observed.  The  n i t rogen  oxides  
which  evolve during b o t h  d e c o m p o s i t i o n  steps apparen t ly  consist  a lmost  
ent i rely of  NO2, the  a m o u n t  of  NO being only  1--3%. With increasing sample 
weight  more  and more  NOx evolves dur ing the  first step; t he  ratio o f  to ta l  
NO~ f rom the  first step to  to ta l  NO.~ f rom the  second step increases f rom 
0.30 to 2.8 for  sample weights  f rom 1 to  10 rag. These rat ios agree well wi th  
those  ob ta ined  f rom the  measured  weight  losses ( co lumn  6). The  NO frac- 
t ion  of  the  NO~ p roduced  in the  first d e c o m p o s i t i o n  step seems to  be a l i t t le 
higher than  the  percentage  in the  second step ( co lumn 7); however ,  t he  abso- 
lute  d i f ferences  are very small. So, m o s t  of  t he  d e c o m p o s i t i o n  o f  b o t h  steps 
probably  occurs according to the  same mechan ism.  The  results ob ta ined  pro- 
vide addi t ional  p roof  tha t  t he  p roposed  mechan i sm of  a first d e c o m p o s i t i o n  
step results in a mix tu re  of  MnO2 and anhyd rous  Mn(NO3)2. 

X-Ray results 

In the  ASTM and JCPDS indexes  two  types  o f  ~,-MnO2 are dis t inguished,  
viz. MnO2 p r o d u c e d  electrolyt ical ly  or chemical ly .  The  electrolyt ical ly  pre- 
pared MnO2 (JSMD) differs f rom the  chemical ly  prepared  MnO2 (CMD) by 
showing a d i f f rac t ion pa t te rn  conta in ing  less lines. The  d i f f rac t ion  pa t t e rn  of  
final and in te rmedia te  p roduc ts  ob ta ined  by decompos ing  Mn(NO3)2 solu- 
t ions  closely resembled  each other .  They  co r re sponded  well wi th  EMD 
(ASTM index 14-644),  excep t  for a l ine at d = 143 pm which  should  be 
present  in CMD but  no t  in EMD (see Table 2). When compar ing  the  diffrac- 
t ion  lines of  our  produc ts  wi th  the  five s t rongest  lines of  p-MnO2 (ASTM 
index  12-714),  it is found  tha t  this ext ra  line also coincides.  The  lines of  low 
in tens i ty  which  should  be present  in p-MnO2 are missing excep t  one.  The  dif- 
f ract ion pa t te rns  were  also compared  wi th  the  pat terns  o f  several Interna-  
t ional  C o m m o n  Samples (ICS Nos. 1-5 and 8-10). The  pat terns  of  t he  pro- 
ducts  co r re sponded  a lmost  exact ly  to tha t  of  the  chemical ly  prepared  IC 
samples (Nos. 5 and 8), and di f fered  f rom the  e lectrolyt ical ly  prepared  IC 
samples 1--4, 9 and 10 in tha t  some  lines had  slightly shi f ted (Table 2). 
Pho tographs  of  IC samples as well  as d e c o m p o s i t i o n  p roduc t s  showed  a 
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7 - M n 0 2  
CMD 
A S T M  14-644  
d ( p m )  

7-MnO2 p-MnO~ a ICS c ICS d 
EMD A S T M  12-714  CMD EMD 
A S T M  14-644  d ( p m )  d ( p m )  d ( p m )  
d ( p m )  

P r o d u c t s  
d ( p m )  

396  142 .2  
260  136 .2  
242  130 .6  
232  125 .0  
212  121.1  
205  116 .9  
163 .7  110 .4  
160.5  106 .6  
148 .6  

396  4 0 0  370  e 400  e 
242  243  241 240  
212  212  212  211 
163 .7  165 163  163  
106 .6  143  143  138 .5  

107  b 106  106  

3 9 0 - - 4 0 0  e 
242  
212  
163  
143  
106  

a Five s t ronges t  lines; b w e a k  line; c ICS Nos. 5, 8; d ICS Nos. 1-4, 9, 10;  e diffuse.  

broad diffuse line around d = 370--400 pm. It  is concluded tha t  our pro- 
duct  closely resembles both  7- and p-MnO2. In all products  MnO2 was the  
only or main component .  Sometimes,  however, faint  lines of  7-MnOOH 
(ASTM 18-805) were found and the strongest line of  Mn2Os (ASTM 10-69) 
was present  on the photographs of very rapidly heated samples (>100°C 
min-*). X-Ray photographs of  the intermediate  product  showed identical 
though slightly more diffuse patterns.  

C O N C L U S I O N S  

The thermal  decomposi t ion of aqueous manganese ni trate  solutions can be 
represented by the simplified scheme 

l~t ~P~,Mn(N03)2 
Mn(NO3)2 solution -'> Mn(NOs)2 • H20(D~'MnO~ 

2nd  s t e p  Mn02 

On heating, most  water evaporates unti l  a composi t ion of  the solut ion of 
about  1 mole H20 per mole Mn(NO3)2 is reached. This amoun t  of  H20 
cannot  be removed at 0.1 MPa wi thout  causing some Mn(NOs)2 to decom- 
pose; at 130--140°C the residual H20 begins to evolve, causing some MnO2 
formation.  This decomposi t ion stops when all water vapour has been 
removed. On fur ther  heating, the  remaining Mn(NOs)~ decomposes to MnO2. 
Thus, the  first decomposi t ion step is solely caused by water, which accel- 
erates the  Mn(NO3)2 decomposi t ion and also lowers the  temperature  at 
which the decomposi t ion starts. Water probably  changes the bonding of the  
nitrate groups to manganese in anhydrous  Mn(NOs)2, facilitating the  decom- 
position. If  the  water is no t  present  there is no first decomposi t ion step; 
anhydrous  Mn(NOs)2 then  decomposes in a single step. The main gaseous 
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p r o d u c t  o f  b o t h  d e c o m p o s i t i o n  s t e p s  is NO2,  o n l y  a f e w  p e r c e n t  N O  b e i n g  
f o r m e d .  

T h e  Mn(NO3)2  p r o b a b l y  d e c o m p o s e s  in b o t h  s t e p s  a c c o r d i n g  t o  t h e  s a m e  
m e c h a n i s m ;  s ign i f i can t  d i f f e r e n c e s  in NOx of f -gas  c o m p o s i t i o n  b e t w e e n  b o t h  
d e c o m p o s i t i o n  s t eps  w e r e  n o t  o b s e r v e d .  
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